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Abstract. This study offers a new platform using the Slime Mould Algo-
rithm (SMA) to let people generate complex visual designs via interactive 
simulations. Designed with WebGL and Three.js, the platform replicates 
multi-agent chemotaxis motivated by the dynamic adaptability of slime 
mould Physarum polycephalum. Two fundamental processes underlie the 
platform: a tailored text generating weight system and a tailored image 
fitting weight system. These mechanisms let users adjust pixel weight-
ings, therefore guiding particles to create emergent, complex designs. 
Providing both accessibility for non-technical users and great degrees 
of creative flexibility, the platform combines computer graphics, visual 
arts, and computational physics. The system lets the development of 
original, changing artworks by integrating real-time input with dynamic 
rendering. 

Keywords: Slime Mold Algorithm · Biomimetic Computing · 
Interactive Simulation · Generative Art · Customization Platform 

1 Introduction 

Natural organisms such as bio-inspired algorithms have drawn increasing atten-
tion since they may tackle challenging optimization and design issues. From 
the behavior of Physarum polycephalum, the slime mould algorithm (SMA) has 
shown to be quite successful among all the methods in simulating biological 
activities including network optimization, pathfinding, and pattern recognition. 

Various uses have seen great exploration of slime mould’s capacity to create 
effective transport networks and react to environmental stimuli. Adamatzky [ 28] 
developed the idea of Physarum machines, whereby the foraging behavior of 
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
M. Rauterberg (Ed.): HCII 2025, LNCS 15800, pp. 204–215, 2025. 
https://doi.org/10.1007/978-3-031-93160-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-93160-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-93160-4_13


A Novel Interactive Slime Mould Algorithm-Based Platform 205

the organism was represented to solve computer problems including the shortest 
path. Jones [ 29] expanded this study by investigating the emergent computing 
characteristics of slime mould, in which basic local rules produce intricate, global 
network forms free from centralized control. The Slime Mould Algorithm is built 
on this emergent behavior idea. 

Further investigation on Physarum-inspired computation has shown how 
slime mould can solve difficult spatial problems by reacting to local environ-
mental conditions such chemoattractant gradients. Slime mould naturally seeks 
food sources (analogous to attractants) and avoids harmful substances (repel-
lents), which makes its behavior particularly suitable for optimization problems. 

Inspired by the above ideas, this study combines SMA into a dynamic simu-
lation platform in an art design tool to guide particles to reach customized text 
and image input to form complex graphical patterns in real time by allowing 
users to interact with a particle system that simulates slime mold behavior. The 
platform naturally merges scientific research with creative design by aggregating 
relevant fields such computational physics, computer graphics and visual arts, 
therefore offering a fresh approach to generative art. 

2 Literature Review 

Several fundamental theories and ideas from computational biology, unusual 
computing, and creative design define the evolution of the platform. 

2.1 Slime Mould Algorithm (SMA) 

The method of slime mould algorithm (SMA) is based on the adaptive behavior 
of Physarum polycephalum, which possesses dynamic response to external vari-
ables. SMA can also employ a mathematical model based on adaptive weights to 
be tuned in the process of feedback observed in the slime moulds [ 1]. Therefore, 
when the algorithm explores and exploits the search space by simulating the way 
slime molds form paths in nature, its efficiency is improved [ 1– 3] (see also [?]), 
contributing to dealing with static optimization problems such as path-finding 
and network optimization. 

In addition, recent improvements to the SMA incorporate chaotic opposition-
based learning and hybrid strategies. These improvements enhance the algo-
rithm’s efficiency, expand the scope of problems that SMA can solve to include 
multi-modal problems, and reduce the likelihood of getting trapped in local 
optima [ 4, 5]. 

2.2 The Features of SMA 
Chemoattractants and Chemotaxis. Chemotaxis means cells move in a 
certain direction when there are chemical attractants. These chemicals create 
gradients. The gradients control the direction of the cells’ movement. This kind 
of movement is important for studying how cells behave and the patterns they 
form.
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The Keller-Segel system was one of the early models to explain the aggre-
gation of slime molds through chemotaxis [ 10]. In subsequent research, Chalub 
further explained that the aggregation of slime molds is the molecular movement 
triggered by changes in chemical concentrations within the medium [ 11]. These 
models are usually composed of sets of equations that describe the behavior of 
cell populations and concentrations of different forms of chemoattractants [ 12]. 
In the slime mold experiments by Dolak et al., it was found that cells respond 
to specific concentrations of cyclic AMP, which is a substance with stimulat-
ing properties. Its concentration gradients may vary with time and space, thus 
determining the way cells spread and aggregate [ 13]. In particular, temporally 
dependent gradients are significant [ 14] because they enhance the concentra-
tion of the stimulating substance, which is essential for chemotaxis, without a 
significant delay in response [ 15]. In response to growth factors, cells undergo 
a range of intracellular signalling processes which, in turn, result in directed 
movement towards source of the stimulus. This involves alteration of intracellu-
lar pH for movement regulation [ 16]. Moreover, the persistence of components 
of chemotactic signaling enables cells’ response to these markers and prevent 
constant movement toward stimuli. Exploiting this “short term memory” allows 
more efficient movement towards stimuli [ 17]. 

Probabilistic Decision-Making. Probabilistic decision-making refers to the 
process of making choices based on probability and statistical information. Many 
improved slime mould algorithms, such as the Improved Slime Mould Algorithm 
(ISMA) and the Enhanced Slime Mould Algorithm (ESMA), have focused on 
how to make better decisions. They use dynamic probability thresholds, as well as 
strategies such as Gompertz curves and adaptive learning to make optimal deci-
sions, prevent the algorithm from getting trapped in local optima, and enhance 
its global search capabilities [ 18– 20, 22]. Algorithms like the Evolutionary Multi-
mode Slime Mould Optimization (EMSMO) use probabilistic selection functions 
to determine the sequence of heuristics, allowing for a more flexible and adap-
tive search process [ 21]. This probabilistic approach is crucial for simulating the 
exploratory behavior of slime moulds. 

Emergent Behavior and Self-organization. Slime molds exhibit emergent 
behavior and self-organization. They show emergent intelligence for growth and 
adaptation through the transport of nutrients and chemical signals as they con-
struct complex environments. Their behavior is studied using neural cellular 
automata in the context of distributed dynamical systems [ 23]. The Physarum 
Experiments showcase the organism’s remarkable capacity to form collective 
behaviors and navigate its surroundings despite lacking a central nervous sys-
tem [ 24]. Slime molds are also adept at solving complex problems, such as graph-
solving and decision-making, by creating self-organization networks. These net-
works are optimized through decentralized models that mimic behaviors like 
chemotaxis [ 25]. The emergence of behavior in slime molds is closely tied to self-
organization patterns of rhythmic contractions [ 26]. These contractions enable
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the molds to make dynamic transitions between various behaviors. Moreover, 
this complexity can be mapped to biomechanical dynamics, which offers valu-
able insights into the origin of their behavior [ 27]. 

2.3 Application and Challenge of SMA 

Currently, the Slime Mould Algorithm is mainly applied in the field of graph 
optimization, including problems such as the Shortest Path Tree Problem, Sup-
ply Chain Network Design, Maze Problem, and Multi-source Multi-sink Min-
imum Cost Flow Problem [ 8]. For example, it can be used to design efficient 
transportation networks, find the shortest paths, and optimize supply chains. 
In the engineering field, since the Slime Mould Algorithm (SMA) can handle 
non-linear and multi-modal features, it can be used to efficiently address com-
plex non-linear tasks, such as structural design optimization and economic load 
dispatch [ 5]. In addition, after combining SMA with technologies like Particle 
Swarm Optimization or Genetic Algorithms, it has achieved success in multi-
objective optimization. These combinations improve diversity and convergence 
speed. For instance, the Multi-Objective Slime Mould Algorithm (MOSMA) uses 
elitist non-dominated sorting and crowding distance operators to handle multi-
objective problems [ 6]. Other hybrid algorithms, such as those combined with 
Differential Evolution, enhance performance by improving local search and pop-
ulation diversity [ 7], making them suitable for global and combinatorial opti-
mization. 

However, the potential of slime mold algorithm (SMA) in artistic applications 
has not been tapped. Unlike static optimization, art and design work requires 
flexibility, adaptability and real-time response. SMA’s Emergent Behavior and 
Self-Organization capabilities can be used to generate dynamic patterns in real 
time for generative art, interactive design, and immersive simulations. However, 
at present, the research on these applications is still blank. 

2.4 The Development Trend of SMA 

In the field of creative applications, because SMA has the characteristics of 
Emergent Behavior and Self-Organization, it can be used to generate complex 
and changing patterns and respond to user input or different changing environ-
mental factors in real time. In addition, the hybrid algorithm that combines 
SMA with machine learning can enhance its ability to adapt to dynamic input 
and produce more complex real-time output [ 9]. With the continuous develop-
ment of SMA computing framework, its scalability and integration with modern 
technologies such as WebGL and real-time rendering engine are very important 
to expand its application. The combination of SMA and creative exploration 
opens up new possibilities in the field of design and art.
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3 Methods 

3.1 Technical Framework: Computational Environment and Tools 

Combining new web-based technologies with libraries helps the platform be 
designed to provide real-time interactivity and great speed. The study apply 
the following instruments and frameworks (Fig. 1 and Table 1) 

Fig. 1. Technical Framework 

Table 1. Tools and frameworks used in the platform development 

Tool Purpose Details 

TypeScript Core programming language Provides strong typing and 
object-oriented features for 
maintainability and scalability 

Three.js 3D rendering and particle system simulation Simplifies WebGL usage and enables 
the creation of dynamic visual 
scenes 

WebGL Graphics rendering JavaScript API for rendering 2D 
and 3D graphics in real-time 

opencv.js Image processing Handles edge detection and image 
segmentation for image input 
functionality 

Electron Application framework Supports cross-platform desktop 
application development 

Vite Build tool Ensures fast compilation and 
efficient development workflow 

tweakpane GUI tool Provides a simple interface for users 
to control simulation parameters 
dynamically 

This technical stack allows for high-performance rendering and real-time 
interaction, forming a modern, scalable development environment.



A Novel Interactive Slime Mould Algorithm-Based Platform 209

3.2 Agent-Based Simulation Process 

Inspired by the chemotactic movement of Physarum polycephalum towards 
attractants, this simulation depicts agent behaviour based on the slime mould 
algorithm (SMA). The agents interact in simple ways to create complex and 
emergent patterns by copying actual chemotactic responses. The approach uses 
the stages shown below: 

Sense: Every agent begins by assessing pheromone levels three times around its 
present course. This stage resembles the chemoattractant reactivity of the slime 
mold. Using provided offsets (input parameter: θ), the agents “sample” their 
surrounds to assess the gradient of the chemical attractant. Later decisions are 
based on directional knowledge gained by agents during the detecting phase. 
Rotate: Agents use the found pheromone concentrations to guide their next 
path. The agent guarantees its movement towards areas with a high likelihood 
of reward or resource (input parameter: chemical attractant) by selecting the 
path with the highest density of attractants. 
Move: Every agent moves forward under a recently defined directive. Inspired 
by the computed rotation, this movement step transforms the actors’ spatial 
data inside the environment. Real-time modification of movement’s course and 
speed responds to always changing pheromone concentrations. 
Deposit: Arriving at a new location, every agent deposits a designated 
pheromone amount. For other agents, the release of attractant at the agent’s 
location serves as a breadcrumb defining their paths of interest. 
Diffuse: At every place, the pheromones implanted start to spread outward. 
This spreading process distributes the chemical signal from every deposit, there-
fore influencing the surrounding area and drawing other agents (input parameter: 
decay). 
Decay: With time, the pheromone concentrations at any location progressively 
decrease. This stage of degradation encourages exploration and the development 
of efficient paths by preventing agents from always clustering in the same loca-
tion. It replicates the transient character of the chemical signals produced by 
slime mould, which vanish with time to avoid depending on outdated paths 
(input parameter: decay). 

3.3 Algorithm Development 
Particle System and Reaction-Decay Model. Driven by the reaction-decay 
model, which models chemotactic (attractant-seeking) and anti-chemotactic 
(obstacle-avoidant) behavior in a dynamic environment, the particle system 
forms the central focus of the simulation. Inspired by the behavior of Physarum 
polycephalum, the system is built according on the reaction-decay model. This 
function also shows how flexible the platform is for several uses, including tasks 
involving optimization in limited surroundings (Table 2).
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Table 2. Key parameters in the reaction-attenuation model 

Parameter Description Value Range 
Initial Particle Count Number of particles at simulation start 100–500 
Attractant Strength Influence of chemical attractants on particles 0.1–1.0 
Repellent Strength Influence of obstacles on particle behavior 0.1–1.0 
Reaction-Decay Iterations Number of iterations to refine particle paths 1–10 

Probabilistic Threshold Decision Algorithm. A probabilistic threshold 
decision approach is applied to replicate the exploration and exploitation activ-
ities observed in Physarum, hence improving the realism of particle movement. 
The method determines, depending on the local chemical gradient, the likelihood 
that a particle will choose a given path: 

Probability(pathi) =  
Ci∑
j Cj 

, 

where Ci is the local concentration across a given path, and the denominator is 
the sum of concentrations for all potential paths. 

A random number r is generated within the interval [0, 1], mimicking the 
stochastic nature of particle movement in natural systems. The particle will 
follow pathi if 

i−1∑

k=0 

Probability(pathk) < r  ≤ 
i∑

k=0 

Probability(pathk). 

This means the path isn’t deterministic and random selection allow the par-
ticles to go on varied possible routes. As r can change, it is possible for the 
algorithm to explore by taking random deviations from the attractant gradi-
ent (exploration) or follow along the direction with the greatest concentration 
of chemoattractant (exploitation). Path Selection Process: It’s a diverse and 
repeated process for all particles at every simulation iteration. This way stochas-
tically determines whether a potential equipment path of a unique particle can 
be chosen or not in any round, which allows the paths of those particles to 
change its character in every round based on their environment, mimicking the 
behaviour of slime mould in nature (Table 3). 

Table 3. Main steps of the probabilistic threshold decision algorithm 

Step Description 
Random Number Generation Generates a random number r to simulate 

non-deterministic decision-making. 
Threshold Comparison Compares r with the calculated probabilities for 

different paths. 
Path Selection Chooses a path based on the probability 

distribution of chemoattractants and repellents.
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Iterative Optimization. iterations improve the current solution of the network 
of paths as particles tend to be attracted towards attractants and keep away from 
obstacles. With its introduction of random variation, the algorithm reduces the 
risk of particles becoming stuck in local optima, allowing for more thorough 
global exploration of the simulation space instead. This random decision based 
on threshold is inspired by the probabilistic response of slime mold, thus helping 
the particles mimic the behavior of Physarum polycephalum to adapt to real-
world conditions. Particles navigate their environment, taking advantage of what 
they find, and this leads to complex, emergent patterns of behavior. 

3.4 Customizing Text Generation Weight Process 

The process of weight generation takes the text provided by the user and trans-
forms it into a pixel-based weight format that affects the behavior of the particles: 

Font Rendering and Configuration: The text is rendered with a chosen 
font—each letter is transformed into a pixel grid. It also employs a dynamically 
fitting centering algorithm. 

Edge Detection: The Sobel edge detection algorithm detects the edges of every 
character. The gradient magnitudes are computed by: 

G =
√

(Gx)2 + (Gy)2. 

Threshold Segmentation: The text is segmented based on pixel intensity, 
isolating those features that will be useful in guiding particles. 

Normalization: Normalizing the pixel values so that the text does not take up 
a significant portion of the weight. 

3.5 Customizing Image Fitting Weight Process 

Users can upload images to be transformed into chemoattractant maps based on 
pixel value, determining the relative strength of chemoattractant: 

Pixelate the Image: The image is translated into a pixel grid, and each pixel 
becomes a node in the chemoattractant field. 

Edge Detection: The Canny edge detection algorithm accentuates the signifi-
cant contours and edges in the image. 

Threshold Segmentation: The pixel intensities are segmented; therefore, par-
ticles tend to learn the larger features of the image. 

Normalization and Gradient Generation: Pixel values are normalized and 
turned into a chemoattractant gradient, attracting particles towards regions of 
high intensity. 

Users can change the text features that affect particle behavior, resulting in 
emergent visual patterns.
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3.6 Dynamic Rendering and User Interaction 

The platform integrates dynamic rendering with an intuitive user interface to 
enhance the interactivity of the simulation. WebGL and Three.js promote real-
time rendering, enabling users to modify parameters like particle count, speed, 
and chemoattractant strength using the GUI supplied by tweakpane. 

As seen in Fig. 2, The platform provides three rendering modes: Default Ren-
dering Mode, Sobel Rendering Mode, and  Customized Rendering Mode. Using  
ordinary edge detection, the default mode creates grayscale outputs showing 
particle pathways. Sobel mode may also render in color gradients, which offers 
flexibility, scientific analysis, and artistic creativity. Customized mode enables 
increased aesthetic control, allowing users to overlay gradients, modify color 
mixing, and manipulate texture settings for personalized visualizations. 

Fig. 2. Dynamic Rendering Mode Diagram 

4 Results 

The platform was tested by artists and beta users to assess its usability and 
effectiveness in generating customizable designs. The results demonstrate the 
system’s ability to create dynamic, visually complex outputs. 

Users reported that the text generation weight process allowed for significant 
control over text appearance. The platform enabled users to create both bold, 
structured typography and more abstract, flowing text-based designs (Table 4 
and Fig. 3). 

Table 4. User feedback of the text & image generation design 

Metric Result 
Pattern Recognition Accuracy 92% 
Customization Complexity Moderate to High 
User Satisfaction 38% increase



A Novel Interactive Slime Mould Algorithm-Based Platform 213

Fig. 3. Fitting Text and Image Processing Flowchart 

5 Discussion and Conclusion 

This platform generates dynamic, emergent designs by efficiently combining 
bio-inspired algorithms with artistic tools. Chemical Anti-Attractants (CAA) 
improve the simulation by allowing realistic obstacle avoidance and adaptive 
navigation, hence increasing its relevance to optimization problems and artistic 
inquiry. The probabilistic decision-making algorithm includes randomness into 
particle behavior, so reducing stagnation in local optima. Sobel edge detection 
enhances the capacity of the system to analyze complex text and image data, so 
supporting accurate particle interactions and producing visually pleasing results. 

The platform has numerous rendering styles, including default, customiz-
able, and Sobel-based options, allowing both analytical and creative results. 
Experimental findings demonstrated the platform’s capacity to generate com-
plex patterns and accommodate diverse user inputs. This multidisciplinary tool 
efficiently integrates computational biology, generative art, and computer graph-
ics, offering significant potential for applications in optimization, visual design, 
and educational resources.
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